Consistent Gets for an Index Scan

This question was raised by a participant during my User Group Session on “Indexing : Fact & Myth Session”. Therefore, I thought of writing about it with the same example that I demonstrated..

I was demonstrating on a Myth that “High Cardinality Column should be a Leading Column of an Index” and for this, I created following table with 2 Indexes.

create table t1 as
select * from all_objects;

exec dbms_stats.gather_table_stats(user,'T1');

SQL> select owner, num_rows, blocks from dba_tables where table_name='T1' and owner='SCOTT';

OWNER                  NUM_ROWS     BLOCKS
-------------------- ---------- ----------
SCOTT                     68605       1377

SQL> select column_name, num_distinct, num_nulls from dba_tab_columns
where   owner='SCOTT'
and     table_name='T1'
and     column_name in ('OBJECT_ID','TEMPORARY')
order by 1;

COLUMN_NAME                    NUM_DISTINCT  NUM_NULLS
------------------------------ ------------ ----------
OBJECT_ID                             68605          0
TEMPORARY                                 2          0

SQL> create index t1_ot on t1(object_id, temporary);

Index created.

SQL> create index t1_to on t1(temporary,object_id);

Index created.

SQL> select index_name, blevel, leaf_blocks, clustering_factor from dba_indexes
where   table_name='T1'
order by 1;

INDEX_NAME                         BLEVEL LEAF_BLOCKS CLUSTERING_FACTOR
------------------------------ ---------- ----------- -----------------
T1_OT                                   1         171              1458
T1_TO                                   1         171              1494

So, I have a table with 68605 rows. Object_ID is 100% Distinct and Temporary has 2 Distinct Values. I have 2 indexes on it, which are on object_id & temporary. T1_OT is on (Object_ID, Temporary) and T1_TO is on (Temporary, Object_ID). The naming convention stands for the first letter of the columns in the order they are in the Index. So, for T1_OT O->Object_id and T->Temporary.

The Index Statistics shows that the two indexes are almost same, in terms of Height (BLEVEL), number of Leaf Blocks. A minor different in the Clustering_factor though.

I than executed the queries to demonstrate that the I/O’s done by queries using any of the 2 indexes is exactly same. For this, I executed the query and it used Index T1_OT and and then hinted the query to make use of T1_TO Index. The Cost and IO’s for both the queries are exactly same, which leads to a conclusion that cardinality doesn’t matter when designing a Index Strategy. Index Columns should be based on Application Queries and the Columns. The queries were executed twice to ensure that the consistent gets that we are post the hard parsing.


## IO's for the Query using an Index T1_OT

select owner, object_name from t1
where      object_id = 58
and        temporary='N';

OWNER                OBJECT_NAME
-------------------- ------------------------------
SYS                  I_CCOL2

set autot trace
select owner, object_name from t1
where      object_id = 58
and        temporary='N';

Execution Plan
----------------------------------------------------------
Plan hash value: 3109227855

---------------------------------------------------------------------------------------------
| Id  | Operation                           | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                    |       |     1 |    48 |     2   (0)| 00:00:01 |
|   1 |  TABLE ACCESS BY INDEX ROWID BATCHED| T1    |     1 |    48 |     2   (0)| 00:00:01 |
|*  2 |   INDEX RANGE SCAN                  | T1_OT |     1 |       |     1   (0)| 00:00:01 |
---------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - access("OBJECT_ID"=58 AND "TEMPORARY"='N')

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
          4  consistent gets 
          0  physical reads
          0  redo size
...
...
          1  rows processed

## IO's with Index T1_TO

SQL> select /*+ index(t1,t1_to) */ owner, object_name from t1
     where      object_id = 58
     and        temporary='N';

OWNER                OBJECT_NAME
-------------------- ------------------------------
SYS                  I_CCOL2

Elapsed: 00:00:00.00
SQL> pause;

set autot trace
select /*+ index(t1,t1_to) */ owner, object_name from t1
where      object_id = 58
and        temporary='N';


Execution Plan
----------------------------------------------------------
Plan hash value: 1129381402

---------------------------------------------------------------------------------------------
| Id  | Operation                           | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                    |       |     1 |    48 |     2   (0)| 00:00:01 |
|   1 |  TABLE ACCESS BY INDEX ROWID BATCHED| T1    |     1 |    48 |     2   (0)| 00:00:01 |
|*  2 |   INDEX RANGE SCAN                  | T1_TO |     1 |       |     1   (0)| 00:00:01 |
---------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - access("TEMPORARY"='N' AND "OBJECT_ID"=58)


Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
          4  consistent gets
          0  physical reads
          0  redo size
...
...
          1  rows processed

While I have 2 Indexes on the same columns only the ordered changed, optimizer chose an Index on Object_ID and Temporary. As my sessions are interactive (and this sometimes mean that my sessions take more time than alloted :)), I asked the participants the reason behind this optimizer decision and there were lot many assumptions. Anju Garg came out with the correct guess. However, will disclose this later.

At this point, the question raised was, why there are 4 Consistent I/O’s? The assumption here was that it should be 3 (BLEVEL + LEAF BLOCK Access + Table Block).

Next, I dropped any one of the Index and re-created it as a Unique Index. Remember, Object_ID is 100% Distinct. So, I will drop and re-create T1_OT.

SQL> drop index t1_ot;

Index dropped.

Elapsed: 00:00:00.04
SQL> create unique index t1_ot_uq on t1(object_id, temporary);

Index created.

SQL> select index_name, blevel, leaf_blocks, clustering_factor, uniqueness from dba_indexes
where   table_name='T1'
order by 1;
  2    3
INDEX_NAME                         BLEVEL LEAF_BLOCKS CLUSTERING_FACTOR UNIQUENES
------------------------------ ---------- ----------- ----------------- ---------
T1_OT_UQ                                1         162              1457 UNIQUE
T1_TO                                   1         171              1493 NONUNIQUE

I will then execute the queries to check for the consistent gets. This time, the consistent gets for the execution plan with Unique Index is 3 (as against 4 for the same non-unique index).

select owner, object_name from t1
where      object_id = 58
and        temporary='N';

Execution Plan
----------------------------------------------------------
Plan hash value: 1959391432

----------------------------------------------------------------------------------------
| Id  | Operation                   | Name     | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |          |     1 |    48 |     2   (0)| 00:00:01 |
|   1 |  TABLE ACCESS BY INDEX ROWID| T1       |     1 |    48 |     2   (0)| 00:00:01 |
|*  2 |   INDEX UNIQUE SCAN         | T1_OT_UQ |     1 |       |     1   (0)| 00:00:01 |
----------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - access("OBJECT_ID"=58 AND "TEMPORARY"='N')


Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
          3  consistent gets
          0  physical reads

There is a difference in the Consistent Gets with Unique and Non-Unique Index. The height of both these Indexes are exactly same. This difference was important to get to original question. So, I generated a 10046 trace for the 2 Queries (with Unique and Without Unique Scan) and the relevant portion from the trace is as under, which will explain the reason behind 4 Consistent Gets.

## 10046 portion for Non-Unique index. Please see the BOLD and UNDERLINED portion. The extra cr=1 for FETCH#18446604434610142176.
## In this case, once the Blocks are fetched from an Index (cr=2) and Table (cr=1) Total cr=3, there is an extra cr immediately after 
## SQL*Net message to client. So, the total cr = 2 + 1 + 1 (extra) = 4.

PARSE #18446604434610142176:c=118,e=119,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=1259244381,tim=7093069466
EXEC #18446604434610142176:c=88,e=93,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=1259244381,tim=7093070117
WAIT #18446604434610142176: nam='SQL*Net message to client' ela= 8 driver id=1413697536 #bytes=1 p3=0 obj#=0 tim=7093070421
WAIT #18446604434610142176: nam='db file scattered read' ela= 2292 file#=12 block#=275312 blocks=8 obj#=77545 tim=7093073241
WAIT #18446604434610142176: nam='db file sequential read' ela= 49 file#=12 block#=255875 blocks=1 obj#=77543 tim=7093073719
FETCH #18446604434610142176:c=2088,e=3043,p=9,cr=3,cu=0,mis=0,r=1,dep=0,og=1,plh=1259244381,tim=7093073891
WAIT #18446604434610142176: nam='SQL*Net message from client' ela= 624 driver id=1413697536 #bytes=1 p3=0 obj#=77543 tim=7093074878
FETCH #18446604434610142176:c=104,e=104,p=0,cr=1,cu=0,mis=0,r=0,dep=0,og=1,plh=1259244381,tim=7093075164
STAT #18446604434610142176 id=1 cnt=1 pid=0 pos=1 obj=77543 op='TABLE ACCESS BY INDEX ROWID T1 (cr=4 pr=9 pw=0 str=1 time=3109 us cost=2 size=48 card=1)'
STAT #18446604434610142176 id=2 cnt=1 pid=1 pos=1 obj=77545 op='INDEX RANGE SCAN T1_TO (cr=3 pr=8 pw=0 str=1 time=2835 us cost=1 size=0 card=1)'
WAIT #18446604434610142176: nam='SQL*Net message to client' ela= 6 driver id=1413697536 #bytes=1 p3=0 obj#=77543 tim=7093076331

## 10046 portion for Unique index. In this case, once the Blocks are fetched from an Index (cr=2) and Table (cr=1), there is no extra cr.

PARSE #18446604434610123376:c=134,e=135,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=1959391432,tim=7120639467
EXEC #18446604434610123376:c=89,e=90,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=1959391432,tim=7120640009
WAIT #18446604434610123376: nam='SQL*Net message to client' ela= 8 driver id=1413697536 #bytes=1 p3=0 obj#=0 tim=7120640248
WAIT #18446604434610123376: nam='db file scattered read' ela= 5875 file#=12 block#=260496 blocks=8 obj#=77546 tim=7120646397
WAIT #18446604434610123376: nam='db file sequential read' ela= 64 file#=12 block#=255875 blocks=1 obj#=77543 tim=7120646786
FETCH #18446604434610123376:c=1407,e=6569,p=9,cr=3,cu=0,mis=0,r=1,dep=0,og=1,plh=1959391432,tim=7120646947
STAT #18446604434610123376 id=1 cnt=1 pid=0 pos=1 obj=77543 op='TABLE ACCESS BY INDEX ROWID T1 (cr=3 pr=9 pw=0 str=1 time=6549 us cost=2 size=48 card=1)'
STAT #18446604434610123376 id=2 cnt=1 pid=1 pos=1 obj=77546 op='INDEX UNIQUE SCAN T1_OT_UQ (cr=2 pr=8 pw=0 str=1 time=6240 us cost=1 size=0 card=1)'
WAIT #18446604434610123376: nam='SQL*Net message from client' ela= 583 driver id=1413697536 #bytes=1 p3=0 obj#=77543 tim=7120652705
FETCH #18446604434610123376:c=15,e=15,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0,plh=1959391432,tim=7120652925
WAIT #18446604434610123376: nam='SQL*Net message to client' ela= 5 driver id=1413697536 #bytes=1 p3=0 obj#=77543 tim=7120653074

From this, I can assume that the steps carried out for a Non-Unique Index is as under (as it an Index-Range Scan).

-	Read the Root Block to get the address of the Leaf Block (IO = 1). 
- 	Read the Leaf Block to check for the matching Object_ID and Temporary Column. Get the ROWID for the table block. (IO = 2).
-	Go to the Table Block to read the other required columns listed in the SELECT list. (IO=3).
-	Go back to the Index Block to check for any other Object_ID and Temporary Values. (IO=4).
-	It is here that it gets to know that there are no more rows.

Bullet Point 4 is not required for a Unique Scan as Oracle is aware that it is a Unique Index and therefore, there will be no additional read required. Further, to confirm this, I executed a query on OBJECT_ID using an Unique Index. Remember, while Object_Id is 100% Unique, but the Unique Index is on the 2 columns and I am not referring the 2nd column in the query, which will change the plan from UNIQUE SCAN to RANGE SCAN.

select owner, object_name from t1
where      object_id = 58;

Execution Plan
----------------------------------------------------------
Plan hash value: 1834913555

------------------------------------------------------------------------------------------------
| Id  | Operation                           | Name     | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                    |          |     1 |    46 |     3   (0)| 00:00:01 |
|   1 |  TABLE ACCESS BY INDEX ROWID BATCHED| T1       |     1 |    46 |     3   (0)| 00:00:01 |
|*  2 |   INDEX RANGE SCAN                  | T1_OT_UQ |     1 |       |     2   (0)| 00:00:01 |
------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - access("OBJECT_ID"=58)

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
          4  consistent gets 

So, this answers the question raised during the session on the rationale behind 4 Consistent Reads. Unique and Non-Unique Indexes are internally same with only a difference in the way these are accessed. With Index Range Scan, the behaviour of both the indexes are exactly same.

Now, for the another question on why the optimizer used T1_OT (by default) and not T1_TO ? The reason was a TIE between the 2 indexes, which is usually very rare with Cost Based Optimization and due to the TIE, optimizer preferred an Index in an alphabetical order. TI_OT comes before TI_TO. To demonstrate this, I dropped and recreated T1_TO as T1_1TO and optimized started using T1_1TO by default.

Advertisements

About Vivek Sharma
I am an Oracle Professional from Mumbai (India). I blog on the issues that I feel is Interesting for my readers. Some of these are my real life examples, which I hope, you would find interesting. Comments are always a welcome. The Technical Observations & Views here are my own and not necessarily those of Oracle or its affiliates. These are purely based on my understandings, learnings and resolutions of various customer issues.

One Response to Consistent Gets for an Index Scan

  1. Pingback: Index – Ordering of Columns | Real Life Database / SQL Experiences : An Oracle Blog from Vivek Sharma

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s